§10. Witten's invariants for 3-manifolds
Let L be a framed link in S^{3}.
Dehn surgery:
Take for simplicity L to be the unknot Consider tubular neighborhood $N(L)$ of L $N(L)$ is homeomarphic to $D \times S^{\prime}$. Take closed curve γ an $\partial N(L)$ giving the framing of L. Let m be the meridian on the boundary of $H \cong D \times S^{\prime}$

$$
\text { Put } E(L)=\overline{S^{3} \backslash N(L)}
$$

$E(L)$ is a solid torus itself! We glue back H
 into $E(L)$ by identifying m with r

Let L and L^{\prime} be framed links in S^{3}. Denote by M_{L} and M_{L}^{\prime} the 3 -manifolds obtained by Dehn surgery on L and L^{\prime}, respectively. Then we have the following
Theorem 1 (Kirby moves):
There is an orientation preserving homeom. $M_{L} \cong M_{L}^{\prime}$ if and only if L^{\prime} is obtained from L by applying the following local move

T
finitely many times, where $\varepsilon= \pm 1$ and n stand for the number of strands passing
through the trivial knot with ε-framing.
For $\Sigma=0 \Rightarrow$ deleting/ adding trivial knot with Σ framing
Next: Define Witten's invariants for arbitrary 3-manifolds obtained by Dehn surgery from S^{3}.
Let of be the Lie algebra $s l_{2}(\mathbb{C})$. Fix a positive integer k and denote by $P_{+}(k)$ the set of level k highest weights of affine Lie algebra of.
$\rightarrow P_{+}(k)=\{0,1, \cdots, k\}$. For each $\lambda \in P_{f}(k) \rightarrow H_{\lambda}$ on which Virasoro algebra acts with central charge $c=\frac{3 k}{k+2}$. Set $C=\exp \left(2 \pi \sqrt{-1} \frac{c}{24}\right)^{-3}=e^{-\pi r^{-1} \frac{c}{4}}$
Level k characters $X_{\lambda}(\tau), \operatorname{Im} \tau>0, \lambda \in P_{+}(k)$ satisfy:

$$
\begin{aligned}
& X_{\lambda}\left(-\frac{1}{\tau}\right)=\sum_{\mu} S_{\lambda m} X_{\mu}(\tau) \\
& X_{\lambda}(\tau+1)=\exp \left(2 \pi \sqrt{-1}\left(\Delta_{\lambda}-\frac{c}{24}\right)\right) X_{\lambda(\tau)}
\end{aligned}
$$

where $S_{\lambda_{m}}=\sqrt{\frac{2}{k+2}} \frac{\sin (\lambda+1)(\mu+1)}{k+2}, \Delta_{\lambda}=\frac{\lambda(\lambda+2)}{4(k+2)}$

Modular transformations S and T
satisfy: $\quad S^{2}=(S T)^{3}=\mathbb{1 1}$
As a consequence of the above we have Lemma |:
The above $S_{\lambda \mu}, 0 \leqslant \lambda_{1} \mu \leqslant k$, satisfy

$$
C \sum_{\mu} S_{\lambda \mu} S_{\mu \nu} \exp \left(2 \pi \sqrt{-1}\left(\Delta_{\lambda}+\Delta_{\mu}+\Delta_{\nu}\right)\right)=S_{\lambda \nu}
$$

Let now L be an oriented framed link in S^{3} with components L_{1}, \ldots, L_{m}. Given a coloring $\lambda:\{1, \ldots, n\} \rightarrow P_{+}(k)$ with highest weights of level $K \rightarrow$ invariants $J\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)$ Let L be the Hopf link with two components L_{1}, L_{2} :

$$
l k\left(L_{1}, L_{2}\right)=1
$$

Then we have the following Proposition 1:
Let H be a Hopf link colored with $\lambda_{1} \mu \in P_{+}(k)$. Then $\gamma\left(H_{i} \lambda_{1} \mu\right)=\frac{S_{\lambda \mu}}{S_{00}}$

Proof:
Represent the Hopf link as a cabling of a trivial Knot with - 1 framing:

$$
\begin{aligned}
& f\left(L_{1}\right)=-1 \\
& f\left(L_{2}\right)=-1 \\
& l k\left(L_{1}, L_{2}\right)=-1
\end{aligned}
$$

By Lemma 3 and Proposition 1 of $\oint 9$, we have

$$
\begin{aligned}
\exp 2 \pi \sqrt{-1} & \left(-\Delta_{\lambda}-\Delta_{m}\right) J\left(H_{i}, \mu, m\right) \\
= & \sum_{v} N_{\lambda m}^{v} \exp \left(2 \pi \sqrt{-1}\left(-\Delta_{\nu}\right)\right) \frac{S_{o v}}{S_{o c}}
\end{aligned}
$$

where we have used that $f(O ; \nu)=\frac{S_{0 v}}{S_{00}}$. Then, using Verlinde's formula and Lemmal, we compute:

$$
\begin{aligned}
& N_{\lambda \mu \nu}=\sum_{\alpha} \frac{S_{\lambda_{\alpha}} S_{\mu \alpha} S_{\nu \alpha}}{S_{0 \alpha}} \text { (Verlinde formula } \\
\Rightarrow & \sum_{\nu} N_{\lambda \mu}^{\nu} \exp \left(2 \pi \sqrt{-1}\left(-\Delta_{\nu}\right)\right) \frac{S_{o \nu}}{S_{00}} \\
= & \sum_{r, \alpha} \frac{S_{2 \alpha} S_{\mu \alpha} S_{\nu \alpha}}{S_{0 \alpha}} \frac{S_{0 \nu}}{S_{00}} \exp \left(2 \pi /-1\left(-\Delta_{\nu}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e^{2 \pi i\left(-\Delta_{\lambda}-\Delta_{\mu}\right)} \xi\left(H_{i} \lambda, \mu\right) \\
& =\sum_{\nu, \alpha} \frac{S_{\lambda \alpha} S_{\mu \alpha} S_{\nu \alpha} S_{o v}}{S_{o \alpha} S_{o 0}} e^{-2 \pi i \Delta_{\nu}} \\
& \begin{array}{r}
\Leftrightarrow J\left(H_{i} \lambda, \mu\right)=\sum_{\nu, \alpha} \frac{S_{\lambda \alpha} S_{\mu \alpha} S_{\nu \alpha} S_{o v}}{S_{o \alpha} S_{00}} e^{-2 \pi i\left(\Delta_{\nu}-\Delta_{\lambda}-\Delta_{n}\right)} \\
\sqrt{\sum_{\nu}} S_{o v} S_{\nu \alpha} e^{-2 \pi i \Delta_{\nu}}=C S_{o \alpha} e^{2 \pi i \Delta_{\alpha}}
\end{array}
\end{aligned}
$$

(rearranging Lemma 1)

$$
=C \sum_{\alpha} \frac{S_{\lambda \alpha} S_{m \alpha} S_{\sigma_{\alpha}}}{S_{0 \alpha} S_{00}} e^{2 \pi i\left(\Delta_{\alpha}+\Delta_{\lambda}+\Delta_{\mu}\right)}
$$

Lemma l again

$$
=\frac{S_{\lambda \mu}}{S_{o u}}
$$

Notation:
For link components L_{i} and L_{j} we write $L_{i} \cdot L_{j}=l k\left(L_{i}, L_{j}\right)$. In the case $i=j, L_{i} \cdot L_{i}$ denotes the integer representing the framing of $L_{i} \rightarrow$ obtain matrix $A\left(A_{i j}=\left(L_{i} \cdot L_{j}\right)\right)$ Let n_{+}(resp. n_{-}) be the number of positive
(resp. neg.) eigenvalues of A. Then we write

$$
\sigma(L)=n_{+}-n_{-}
$$

for the signature of the link L.
Theorem 2:
Let M be a compact oriented 3-manifold without boundary. Suppose that M is obtained as Dehn surgery an a framed link L with m components $L_{j, 1} 1 \leqslant j \leqslant m$, in S^{3}. Then,

$$
Z_{k}(M)=S_{o 0} C^{\sigma(L)} \sum_{\{\lambda\}} S_{0 \lambda_{1}} \ldots S_{0 \lambda_{m}} J\left(L_{i} \lambda_{1}, \cdots, \lambda_{m}\right)
$$

is a topological invariant of M and does not depend on the choice of L which yields M. More precisely, if there is an orientation preserving homeomorphism $M_{1} \cong M_{2}$, then $Z_{k}\left(M_{1}\right)=Z_{k}\left(M_{2}\right) . \quad Z_{k}(M)$ is the Chern-Simons partition function of M.

