§10. Witten's invariants for 3-manifolds Let L be a framed link in S³. <u>Dehn</u> surgery: Take for simplicity L to be the unknot Consider tubular neighborhood N(L) of L N(L) is homeomorphic to D×S'. Take closed curve of an DN(L) giving the framing of L. Let m be the meridian on the boundary of H= DxS' Put $E(L) = S^3 \setminus N(L)$ E(L) is a solid torus (51 itself! We glue back H into E(L) by identifying m with Yo framing framing 0

Xet L and L' be framed links in S³.
Denote by M_L and M_L' the 3-manifolds
obtained by Dehn surgery on L and L',
respectively. Then we have the following
Theorem 1 (Kirby moves):
There is an orientation preserving homeom.
$$M_L \equiv M_L'$$
 if and only if L' is obtained
from L by applying the following
local move
 $I = \frac{1}{1 - \frac{1}{1$

through the trivial knot with z-framing.
For
$$\varepsilon = 0 \Rightarrow$$
 deleting / adding trivial knot
with ε framing
Next: Define Witten's invariants for arbitrary
3-manifolds obtained by Dehn
surgery from S³.
Yet of be the Zie algebra $sl_2(\mathbb{C})$. Fix a
positive integer K and denote by $P_{+}(K)$ the
set of level K highest weights of affine
Zie algebra \widehat{q} .
 $\Rightarrow P_{+}(K) = \{0;1, \dots, K\}$. For each $z \in P_{+}(K) \rightarrow H_{\lambda}$
on which Virasoro algebra acts with central
charge $c = \frac{3K}{K+2}$. Set $c = \exp(2\pi i \exists \frac{c}{24})^{-3} = e^{\pi i \exists \frac{c}{4}}$
Yevel K characters $X_{\lambda}(\tau)$, $\operatorname{Im} \tau > 9_{\lambda}\varepsilon P_{+}(K)$
satisfy:
 $X_{\lambda}(\tau+1) = \exp(2\pi i \exists (\Delta_{\lambda} - \frac{c}{24}))X_{\lambda}(\tau)$,
where $Sam = \{\frac{2}{K+2}, \frac{sim(\lambda+1)(m+1)}{K+2}, \Delta_{\lambda} = \frac{a(\lambda+2)}{4(K+2)}\}$

Modular transformations S and T
satisfy:
$$S^2 = (ST)^3 = 1$$

As a consequence of the above we have
Vemmal:
The above $S_{\lambda n}, 0 \leq \lambda, n \leq \kappa, \text{ satisfy}$
 $C \sum_{n} S_{\lambda n} exp(2\pi n T (\Delta_{\lambda} + \Delta_{n} + \Delta_{n})) = S_{\lambda n}$
Jet now L be an oriented framed link
in S^3 with components $L_{1, \dots, L_{n}}$. Given
a coloring $\lambda : \{1, \dots, n\} \rightarrow T_{k}(\kappa)$ with highest
weights of level $\kappa \rightarrow \text{ invariants } J(L;\lambda_{1,\dots,\lambda_{n}})$
Jet L be the Hopf link with two components
 $L_{1}, L_{\lambda}:$
 L_{λ}
Then we have the following
Proposition 1:
Zet H be a Hopf link colored with
 $\lambda_{1} \in T_{k}(\kappa)$. Then $J(H; \lambda_{1} n) = \frac{S_{\lambda n}}{S_{00}}$

Proof:
Represent the Hopf link as a cobling of a
trivial knot with -1 framing:

$$f(L_1) = -1$$

$$f(L_2) = -1$$

$$f(L_1) = -1$$

$$f(L_1) = -1$$

$$f(L_1) = -1$$
By Jemma 3 and Proposition 1 of §9,
we have

$$exp 2\pi \sqrt{-1} (-\Delta_2 - \Delta_m) f(H; \lambda_1 m)$$

$$= \sum_{\nu} N_{\lambda m}^{\nu} exp(2\pi \sqrt{-1} (-\Delta_{\nu})) \frac{Sov}{Soa}$$
where we have used that $f(\mathcal{O}; \nu) = \frac{Sov}{Soa}$.
Then, using Verlinde's farmula and Lemma I,
we compute:

$$N_{\lambda m} v = \sum_{\alpha} \frac{S_{\lambda \alpha} S_{m \alpha} S_{\nu \alpha}}{S_{o \alpha}} (Verlinde formula)$$

$$= \sum_{\nu} N_{\lambda m}^{\nu} exp(2\pi \sqrt{-1} (-\Delta_{\nu})) \frac{Sov}{Soa}$$

$$= \sum_{\nu, \alpha} \frac{S_{\nu \alpha} S_{\nu \alpha} S_{\nu \alpha}}{S_{\sigma \alpha}} exp(2\pi \sqrt{-1} (-\Delta_{\nu}))$$

$$\Rightarrow e^{2\pi i (-\Delta_{\lambda} - \Delta_{\mu})} f(H_{i} \times \mu)$$

$$= \sum_{\nu, \alpha} \frac{S_{\lambda \alpha} S_{\mu \alpha} S_{\nu \alpha} S_{\sigma \nu}}{S_{\sigma \kappa} S_{\sigma \sigma}} e^{-2\pi i \Delta_{\nu}}$$

$$\Leftrightarrow f(H_{i} \times, \mu) = \sum_{\nu, \alpha} \frac{S_{\lambda \alpha} S_{\mu \alpha} S_{\nu \alpha} S_{\sigma \nu}}{S_{\sigma \alpha} S_{\sigma \sigma}} e^{-2\pi i (\Delta_{\nu} - \Delta_{\nu} - \Delta_{\nu})}$$

$$\int \sum_{\nu} S_{\sigma \nu} S_{\nu \alpha} e^{-2\pi i \Delta_{\nu}} = C S_{\sigma \alpha} e^{2\pi i \Delta_{\kappa}}$$

$$(rearranging Zemma 1)$$

$$= C \sum_{\alpha} \frac{S_{\lambda \alpha} S_{\mu \alpha} S_{\sigma \alpha}}{S_{\sigma \alpha} S_{\sigma \sigma}} e^{2\pi i (\Delta_{\kappa} + \Delta_{\lambda} + \Delta_{\nu})}$$

$$Zemma 1 again$$

$$= \frac{S_{\lambda m}}{S_{\sigma \nu}}$$

Notation: For link components Li and L; we write $L_i \cdot L_j = lk(L_i, L_j)$. In the case $i=j, L_i \cdot L_i$ denotes the integer representing the framing of $L_i \longrightarrow obtain$ matrix A $(A_{ij}=(L_i \cdot L_j))$ Zet n_t (resp. n_-) be the number of positive

1 [

(resp. neg.) eigenvalues of A. Then we write

$$\sigma(L) = n_t - n_-$$

for the signature of the link L.
Theorem 2:
Zet M be a compact oriented 3-manifold
without boundary. Suppose that M is
obtained as Dehn surgery an a framed
link L with m components Ly, $I \le j \le m$,
in S³. Then,
 $Z_{\kappa}(M) = S_{00} C^{\sigma(L)} \sum_{\substack{i=1 \ i=1}} S_{02i}, \dots S_{02m} J(L_{i2i}, \dots, 2m)$
is a topological invariant of M and does
not depend on the choice of L which yields
M. More precisely, if there is an orientation
preserving, homeomorphism $M_i \equiv M_2$, then
 $Z_{\kappa}(M_i) = Z_{\kappa}(M_2)$. $Z_{\kappa}(M)$ is the Chern-Simons
partition function of M.